STM32复位及通过函数判断是何种条件出发的复位

摘要

STM32F10xxx支持三种复位形式,分别为系统复位、上电复位和备份区域复位。本文将通过实际的代码来解释各种情况下,软、硬件导致芯片复位的判别和怎样采取措施。

一、系统复位

系统复位将复位所有寄存器至它们的复位状态。 当发生以下任一事件时,产生一个系统复位:

    1. NRST引脚上的低电平(外部复位) 2. 窗口看门狗计数终止(WWDG复位)
    1. 独立看门狗计数终止(IWDG复位)
    1. 软件复位(SW复位)
    1. 低功耗管理复位 可通过查看RCC_CSR控制状态寄存器中的复位状态标志位识别复位事件来源。
      软件复位通过将Cortex™-M3中断应用和复位控制寄存器中的SYSRESETREQ位置’1’,可实现软件复位。请参考Cortex™-M3技术参考手册获得进一步信息。

1.1 低功耗管理复位在以下两种情况下可产生低功耗管理复位:

    1. 在进入待机模式时产生低功耗管理复位: 通过将用户选择字节中的nRST_STDBY位置’1’将使能该复位。这时,即使执行了进入待机模式的过程,系统将被复位而不是进入待机模式。
    1. 在进入停止模式时产生低功耗管理复位: 通过将用户选择字节中的nRST_STOP位置’1’将使能该复位。这时,即使执行了进入停机模式的过程,系统将被复位而不是进入停机模式。
      关于用户选择字节的进一步信息,请参考STM32F10xxx闪存编程手册。

电源复位

电源复位当以下事件中之一发生时,产生电源复位:

    1. 上电/掉电复位(POR/PDR复位)
    1. 从待机模式中返回 图4) 电源复位将复位除了备份区域外的所有寄存器。
      (见图中复位源将最终作用于RESET引脚,并在复位过程中保持低电平。复位入口矢量被固定在地址0x0000_0004。

芯片内部的复位信号会在NRST引脚上输出,脉冲发生器保证每一个(外部或内部)复位源都能有至少20μs的脉冲延时;当NRST引脚被拉低产生外部复位时,它将产生复位脉冲。

iqofJS.png

三、备份域复位

备份区域拥有两个专门的复位,它们只影响备份区域(见图4)。 当以下事件中之一发生时,产生备份区域复位。

    1. 软件复位,备份区域复位可由设置备份域控制寄存器 (RCC_BDCR)(见6.3.9节)中的BDRST位产生。
    1. 在VDD和VBAT两者掉电的前提下,VDD或VBAT上电将引发备份区域复位。

四、复位的标志位

iqohRg.md.png

五、复位标志位检索/判断什么原因导致的复位

标志位判断的代码由官方库中给定代码如下:

FlagStatus RCC_GetFlagStatus(uint8_t RCC_FLAG);//FlagStatus 分为SET和RESET两种;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

/**
* @brief Checks whether the specified RCC flag is set or not.
* @param RCC_FLAG: specifies the flag to check.
*
* For @b STM32_Connectivity_line_devices, this parameter can be one of the
* following values:
* @arg RCC_FLAG_HSIRDY: HSI oscillator clock ready
* @arg RCC_FLAG_HSERDY: HSE oscillator clock ready
* @arg RCC_FLAG_PLLRDY: PLL clock ready
* @arg RCC_FLAG_PLL2RDY: PLL2 clock ready
* @arg RCC_FLAG_PLL3RDY: PLL3 clock ready
* @arg RCC_FLAG_LSERDY: LSE oscillator clock ready
* @arg RCC_FLAG_LSIRDY: LSI oscillator clock ready
* @arg RCC_FLAG_PINRST: Pin reset
* @arg RCC_FLAG_PORRST: POR/PDR reset
* @arg RCC_FLAG_SFTRST: Software reset
* @arg RCC_FLAG_IWDGRST: Independent Watchdog reset
* @arg RCC_FLAG_WWDGRST: Window Watchdog reset
* @arg RCC_FLAG_LPWRRST: Low Power reset
*
* For @b other_STM32_devices, this parameter can be one of the following values:
* @arg RCC_FLAG_HSIRDY: HSI oscillator clock ready
* @arg RCC_FLAG_HSERDY: HSE oscillator clock ready
* @arg RCC_FLAG_PLLRDY: PLL clock ready
* @arg RCC_FLAG_LSERDY: LSE oscillator clock ready
* @arg RCC_FLAG_LSIRDY: LSI oscillator clock ready
* @arg RCC_FLAG_PINRST: Pin reset
* @arg RCC_FLAG_PORRST: POR/PDR reset
* @arg RCC_FLAG_SFTRST: Software reset
* @arg RCC_FLAG_IWDGRST: Independent Watchdog reset
* @arg RCC_FLAG_WWDGRST: Window Watchdog reset
* @arg RCC_FLAG_LPWRRST: Low Power reset
*
* @retval The new state of RCC_FLAG (SET or RESET).
*/
FlagStatus RCC_GetFlagStatus(uint8_t RCC_FLAG)
{
uint32_t tmp = 0;
uint32_t statusreg = 0;
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_RCC_FLAG(RCC_FLAG));

/* Get the RCC register index */
tmp = RCC_FLAG >> 5;
if (tmp == 1) /* The flag to check is in CR register */
{
statusreg = RCC->CR;
}
else if (tmp == 2) /* The flag to check is in BDCR register */
{
statusreg = RCC->BDCR;
}
else /* The flag to check is in CSR register */
{
statusreg = RCC->CSR;
}

/* Get the flag position */
tmp = RCC_FLAG & FLAG_Mask;
if ((statusreg & ((uint32_t)1 << tmp)) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}

/* Return the flag status */
return bitstatus;
}

当然判断完后,我们需要将复位类型的标志置位以防后期出现重复多次判断

void RCC_ClearFlag(void);//清除复位执行函数

代码原型如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
/**
* @brief Clears the RCC reset flags.
* @note The reset flags are: RCC_FLAG_PINRST, RCC_FLAG_PORRST, RCC_FLAG_SFTRST,
* RCC_FLAG_IWDGRST, RCC_FLAG_WWDGRST, RCC_FLAG_LPWRRST
* @param None
* @retval None
*/
void RCC_ClearFlag(void)
{
/* Set RMVF bit to clear the reset flags */
RCC->CSR |= CSR_RMVF_Set;
}

  • 在使用时,只需要执行如下语句即可:
1
2
3
4
5
6
7
8
9
10
11
12
13
if(RCC_GetFlagStatus(RCC_FLAG_PORRST) != RESET)
{
//这是上电复位
}
else if (RCC_GetFlagStatus(RCC_FLAG_PINRST) != RESET)
{
//这是外部RST管脚复位
}
else if (RCC_GetFlagStatus(RCC_FLAG_SFTRST)!= RESET)
{
//这是外部RST管脚复位
}
RCC_ClearFlag();//清除RCC中复位标志

六、STM32软件复位方法

在Cortex-M3权威指南中有这么一句话这里有一个要注意的问题:从SYSRESETREQ 被置为有效,到复位发生器执行复位命令,往往会有一个延时。在此延时期间,处理器仍然可以响应中断请求。但我们的本意往往是要让此次执行到此为止,不要再做任何其它事情了。所以,最好在发出复位请求前,先把FAULTMASK 置位。所以最好在将FAULTMASK 置位才万无一失。

1
2
3
4
5
void mcuRestart(void)
{
  __set_FAULTMASK(1); //关闭所有中断
  NVIC_SystemReset(); //复位

文章目录
  1. 1. 摘要
    1. 1.1. 一、系统复位
      1. 1.1.0.1. 系统复位将复位所有寄存器至它们的复位状态。 当发生以下任一事件时,产生一个系统复位:
    2. 1.1.1. 1.1 低功耗管理复位在以下两种情况下可产生低功耗管理复位:
  2. 1.2. 电源复位
    1. 1.2.0.1. 电源复位当以下事件中之一发生时,产生电源复位:
  • 1.3. 三、备份域复位
  • 1.4. 四、复位的标志位
  • 1.5. 五、复位标志位检索/判断什么原因导致的复位
  • 1.6. 六、STM32软件复位方法
  • |